A Low Cost, High Capacity Regenerable Sorbent for Pre-Combustion CO₂ Capture

Contract No. DE-FE0000469
Project Review Meeting

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Robert Copeland, PhD

> Pittsburgh, PA August 25, 2011

Project Objective

- The objective of this work is to develop a new pre-combustion CO₂ capture technology and demonstrate its technical and economic viability
- A low cost, high capacity regenerable sorbent removes CO₂ above the dew point of the synthesis gas
- The sorbent is a mesoporous carbon grafted with surface functional groups that remove CO₂ via physical adsorption
- Budget Year 1
 - Sorbent optimization and production scale-up
 - Bench-scale evaluations
 - Process design and optimization
- Budget Year 2
 - Demonstrate sorbent life for 10,000 cycles
 - Slipstream demonstration using actual synthesis gas
 - Based on field data and optimum design, conduct an economic analysis to estimate the cost of CO₂ capture

TDA Research

Project Partners

TDA Research

Project Duration

- Start Date = November 15, 2009
- End Date = September 30, 2012 (no-cost extension is being worked out)

Budget

- Project Cost = \$2,500,000
- DOE Share = \$2,000,000
- TDA and its partners = \$500,000

TDA's Approach

- The sorbent consists of a carbon material modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, the energy input for regeneration is low
- Heat of adsorption of CO₂ is measured as 4.9 kcal mol per mole for TDA sorbent
 - Selexol ~4 kcal/mol
 - Amine solvents ~14.4 kcal/mol
 - Chemical absorbents 20-40 kcal/mol (Na₂CO₃→NaHCO₃ 30 kcal/mol)
- Net energy loss in sorbent regeneration is similar to Selexol
 - A much better IGCC efficiency due to higher temperature CO₂ capture
 - Warm gas clean-up improves cycle efficiency 2 to 4%

IGCC-Integrated CO₂ Capture System

Regeneration Options

- Physical adsorbent provides flexibility in regeneration
 - Temperature swing
 - Pressure swing
 - Concentration swing
 - Combinations
- Isothermal operation is critical to eliminate heat/cool transitions which reduces cycle time and increases sorbent utilization
- Steam consumption can be reduced significantly if steam purge is carried out at low pressure

Syngas Inlet 236°C, 500 psia 40% CO₂ P_{CO2} = 200 psia

Steam/CO₂
235°C, 145 psia
86% CO₂
P_{CO2} = 125 psia

Regeneration

Adsorption

Syngas Inlet 244°C, 492 psia <1% CO₂

 $P_{CO2} = 5 psia$

Steam
245°C, 150 psia
0% CO₂
P_{CO2} = 0 psia

Trade-off – Regeneration Pressure vs. Steam Consumption

Higher regeneration pressure reduces power input for CO₂ compression, while pure concentration swing requires large amounts of high pressure steam from steam cycle

TDA's Sorbent

- Mesoporous carbon has been developed for ultra-capacitors
 - Meso-range pores (20 to 100 Å) are large enough to allow transport of liquid electrolyte in and out of the pores
 - Macro-porosity is avoided to achieve high surface area
 - Surface is modified with functional groups to enhance CO₂ selectivity

CO₂ Isotherm and Heat of Adsorption

CO₂ isotherm at 240°C

Langmuir Coefficient (q _s)	386.4	mmol/g		
Langmuir Coefficient (B)	4.15E-04	1/atm		
Langmuir Coefficient (n)	0.869			
Diffusion Coefficient (D/R²)	1.32E-03	1/s		
Reference Temperature for B	240	°C		
Heat of Adsorption (∆H)	4.8	kcal/mol		

Calorimetry Measurements

 $-\Delta H_{ads} = 4.9$ 0.4 kcal/mol

Isosteric heat of adsorption calculations and DSC experiments confirm the low heat of adsorption

Sorbent Production Scale-up

- Early samples are prepared using a batch process
 - 11" diameter
 - Computer controlled
 - 1000 C temp. limit
 - ~5 kg carbon/run

 60 kg sorbent is prepared for field demonstrations

Sorbent Production Scale-up

Surface Area

- The scaled-up sorbent showed surface area and CO₂ capacity similar to the sorbent produced at small batch size
 - Low temperature isotherms measurements were used for convenience

Sorbent Production Scale-up

- A continuous rotary kiln has been installed and production at pilot scale is being demonstrated
- A cost analysis is underway to estimate the cost of sorbent production

Multiple Cycle Tests

 H_2 =32%, CO_2 =40%, N_2 =3%, CO=1%, H_2O =24%; T= 240°C; P_{ads} = 500 psig; P_{des} = 50-300 psig

Sorbent maintained its CO₂ capacity (8+%wt.) for more than 10,000 cycles

CO₂ Removal Efficiency

Impact of Sulfur

T= 240°C, P= 500 psig, 10 ppmv H₂S, 44% CO₂, 20% H₂, 36% H₂O; Purge Gas: 50% H₂, 50% H₂O

 Presence of H₂S did not have a significant impact on sorbent performance

300 ppmv H₂S, T= 240°C, P= 500 psig

15

PSA Process Design

3 pressure equalizations using 8 beds to minimize syngas recycle

PSA Cycle Sequence

• PSA Cycle Sequence with 8-beds

	Sta	ge 1	Sta	ge 2	Stage 3		Stage 4		Stage 5		Stage 6		Stage 7		Stage 8	
Time (min)	2	2	1	1	2	2	1	1	i	2	1	1	2	2	1	1
Bed 1	ADS		EQ1	HOLD	EC) 2	EQ3	BD	PUI	RGE	EQ4	HOLD	E	Q 5	EQ6	PRESS
Bed 2	EQ6 PRESS ADS		OS	EQ1	HOLD	EQ2		EQ3	BD	PURGE		EQ4 HOLD		EQ5		
Bed 3	EQ5 EQ6 PRESS ADS)S	EQ1 HOLD EQ2		EQ3	BD	PURGE		EQ4 HOLD						
Bed 4	EQ4	HOLD	EC	Q 5	EQ6	PRESS	ΑI	DS	EQ1	HOLD	E	Q2	EQ3	BD	PU	RGE
Bed 5	PUI	RGE	EQ4	HOLD	EC	Ղ 5	EQ6	PRESS	Al	DS	EQ1	HOLD	E	Q2	EQ3	BD
Bed 6	EQ3	BD	PUI	RGE	EQ4	HOLD	EC	Q 5	EQ6	PRESS	А	DS	EQ1	HOLD	E	Q2
Bed 7	EC	Q2	EQ3	BD	PUF	RGE	EQ4	HOLD	E	Q 5	EQ6	PRESS	Al	DS	EQ1	HOLD
Bed 8	EQ1	HOLD	EC	Q2	EQ3	BD	PUI	RGE	EQ4 HOLD		EQ5		EQ6	PRESS	ADS	

8- bed PSA Cycle Steps:

Step 1	Adsorption at 501 psia (ADS)	Step 6	Steam Purge at 145.1 psia (PURGE)
Step 2	Pressure Equalization to 420 psia (EQ1)	Step 7	Pressure Equalization to 250 psia (EQ4)
Step 3	Pressure Equalization to 340 psia (EQ2)	Step 8	Pressure Equalization to 330 psia (EQ5)
Step 4	Pressure Equalization to 260 psia (EQ3)	Step 9	Pressure Equalization to 410 psia (EQ6)
Step 5	Blowdown to 145.1 psia (BD)	Step 10	Product Pressurization to 501 psia (PRESS)

Reactor Configurations

High L/D

Steam Purge
High Press EQ
Med Press EQ
Low Press EQ
Clean Gas Out
Blowdown/Purge Out
Syngas In

Optimization of Process Parameters

- Three pressure equalization steps are considered to increase synthesis gas recovery
 - Ensures maximum amount of syngas is used as a fuel to gas turbine
- Steam purge volume is being optimized

System Analysis

- UCI carries out a process simulation using AspenPlus[™] and evaluate the cost CO₂ capture
- The analysis includes three simulations:
 - E-Gas[™] based IGCC plant with Selexol-based CO₂ capture
 - Calibration Case
 - Compare/validate model results with prior DOE/NETL analysis
 - E-Gas[™] based IGCC plant with Selexol 90% CO₂ capture
 - E-Gas[™] based IGCC plant with TDA's CO₂ capture system
- Same assumptions and cost guidelines will be adopted
 - Consistent design requirements
 - Up-to-date performance and capital cost estimates

System Modeling

CO₂ Purification & Compression

UCI System Analysis Results

	IGCC-Selexol Calibration Case	IGCC-Selexol 90% Capture	IGCC-TDA-WGC 90% Capture	
CO ₂ Capture, %	88.2	90	90	
Gross Power Generated, kWe	696,770	691,624	691,460	
Gas Turbine Power	464,336	461,986	459,990	
Steam Turbine Power	232,434	229,638	231,470	
Auxiliary Load, kWe	171,998	175,498	151,082	
Net Power, kWe	524,772	516,126	540,378	
Net Plant Efficiency, % HHV	32.1	31.6	33.1	

- The IGCC plant with TDA's CO₂ capture technology system achieves higher efficiency than IGCC with Selexol
- Case studies exploring different design configurations on PSA operation, CO₂ purification system

Case Studies	Plant Eff., % HHV
Case 1	32.9
Case 2	32.6
Case 3	32.5
Case 4	32.8
Case 5	32.0

Slipstream Demonstrations

 Two 3-week test campaigns for proof-ofconcept demonstrations

Wabash River IGCC Plant, Terre Haute, IN

- Largest single-train gasifier with 262 MW power output
- Oxy-blown E-GasTM Gasifier
- Operates on petcoke

National Carbon Capture Center, Wilsonville, AL

- Demonstration starts at October 10, 2011
- Pilot-scale gasifier
- Air-blown transport gasifier (based on KBR's gasification technology)
- Operates on coals and lignites

Slipstream Test Skids

- Skid #1 Synthesis gas pre-treatment skid
- Skid #2 CO₂ removal skid
- Skid #3 Gas analysis skid

System Pictures – Before Insulation

Skid #1

Skid #2

Control System

Skid #1

Skid #2

- System automation is complete
- Ready to move forward with slipstream demonstrations!

Acknowledgments

- DOE Project Manager
 - Dr. Arun Bose
- TDA Research, Inc.
 - Dr. Steve Dietz, Lauren Brickner, Amanda Parker, Matt Schaefer, Kerry Libberton
- UCI
 - Dr. Ashok Rao
- CoP
 - Dr. Albert Tsang
 - Casey Morriss
- Southern Company
 - Frank Morton
 - Tony Wu
- MWV
 - Paula Walmett